
	

Continue

158243226890	91892119486	32821987737	12920579.402439	10982065446	117542155.33333	548192037	54398092	75612207544	206608713.44444	14910117.421053	7293708.9428571	174006931600	18438062.270588	7254170.88	18554237.64557	100139452087	15663926.518519	4716335.5425532	127937337600	258791907.375	6634800.72
81389171312	103432646220	112369770710	9076863508	11798986936	86199510.5	146651823942

https://lazav.co.za/XSRYdR1H?utm_term=intro+to+java+programming+liang+10th+edition+pdf+book+pdf+file

Intro	to	java	programming	liang	10th	edition	pdf	book	pdf	file

fundamentals-first	problem-driven	data	structures	comprehensive	version	brief	version	AP	Computer	Science	examples	and	exercises	iii	iv	Preface	with	various	levels	of	difficulty	are	provided	for	students	to	practice	For	our	programming	courses,	we	assign	programming	exercises	after	each	lecture	Our	goal	is	to	produce	a	text	that	teaches	problem
solving	and	programming	in	a	broad	context	using	a	wide	variety	of	interesting	examples	If	you	have	any	comments	on	and	suggestions	for	improving	the	book,	please	email	me	Sincerely,	Y	Daniel	Liang	y.daniel.liang@gmail.com	www.cs.armstrong.edu/liang	www.pearsonhighered.com/liang	ACM/IEEE	Curricular	2013	and	ABET	Course	Assessment
The	new	ACM/IEEE	Computer	Science	Curricular	2013	defines	the	Body	of	Knowledge	organized	into	18	Knowledge	Areas	To	help	instructors	design	the	courses	based	on	this	book,	we	provide	sample	syllabi	to	identify	the	Knowledge	Areas	and	Knowledge	Units	The	sample	syllabi	are	for	a	three	semester	course	sequence	and	serve	as	an	example	for
institutional	customization	The	sample	syllabi	are	available	to	instructors	at	www.pearsonhighered.com/liang	Many	of	our	users	are	from	the	ABET-accredited	programs	A	key	component	of	the	ABET	accreditation	is	to	identify	the	weakness	through	continuous	course	assessment	against	the	course	outcomes	We	provide	sample	course	outcomes	for
the	courses	and	sample	exams	for	measuring	course	outcomes	on	the	instructor	Website	accessible	from	www.pearsonhighered.com/liang	What’s	New	in	This	Edition?	"number	is	even"	:	"number	is	odd");	Console	Output	System.out.println(anyValue);	Primitive	Data	Types	byte	short	int	long	float	double	char	boolean	bits	16	bits	32	bits	64	bits	32	bits
64	bits	16	bits	true/false	Arithmetic	Operators	+	*	/	%	++var	var	var++	var	Relational	Operators	<	>=	==	!=	less	than	less	than	or	equal	to	greater	than	greater	than	or	equal	to	equal	to	not	equal	addition	subtraction	multiplication	division	remainder	preincrement	predecrement	postincrement	postdecrement	Assignment	Operators	=	+=	-=	*=	/=
%=	Logical	Operators	&&	||	!	^	short	circuit	AND	short	circuit	OR	NOT	exclusive	OR	switch	Statements	loop	Statements	switch	(intExpression)	{	case	value1:	statements;	break;	case	valuen:	statements;	break;	default:	statements;	}	while	(condition)	{	statements;	}	{	statements;	}	while	(condition);	for	(init;	condition;	adjustment)	{	statements;	}
assignment	addition	assignment	subtraction	assignment	multiplication	assignment	division	assignment	remainder	assignment	if	Statements	if	(condition)	{	statements;	}	if	(condition)	{	statements;	}	else	{	statements;	}	if	(condition1)	{	statements;	}	else	if	(condition2)	{	statements;	}	else	{	statements;	}	Companion	Web	site:
www.pearsonhighered.com/liang	Java	Quick	Reference	Frequently	Used	Static	Constants/Methods	Math.PI	Math.random()	Math.pow(a,	b)	Math.abs(a)	Math.max(a,	b)	Math.min(a,	b)	Math.sqrt(a)	Math.sin(radians)	Math.asin(a)	Math.toRadians(degrees)	Math.toDegress(radians)	System.currentTimeMillis()	Integer.parseInt(string)
Integer.parseInt(string,	radix)	Double.parseDouble(string)	Arrays.sort(type[]	list)	Arrays.binarySearch(type[]	list,	type	key)	Text	File	Output	PrintWriter	output	=	new	PrintWriter(filename);	output.print();	output.println();	output.printf();	Array/Length/Initializer	int[]	list	=	new	int[10];	list.length;	int[]	list	=	{1,	2,	3,	4};	Multidimensional
Array/Length/Initializer	int[][]	list	=	new	int[10][10];	list.length;	list[0].length;	int[][]	list	=	{{1,	2},	{3,	4}};	Ragged	Array	int[][]	m	=	{{1,	2,	3,	4},	{1,	2,	3},	{1,	2},	{1}};	File	Class	Object	Class	File	file	=	new	File(filename);	file.exists()	file.renameTo(File)	file.delete()	Object	o	=	new	Object();	o.toString();	o.equals(o1);	Comparable	Interface	Text	File
Input	c.compareTo(Comparable)	c	is	a	Comparable	object	Scanner	input	=	new	Scanner(new	File(filename));	String	Class	ArrayList	Class	String	s	=	"Welcome";	String	s	=	new	String(char[]);	int	length	=	s.length();	char	ch	=	s.charAt(index);	int	d	=	s.compareTo(s1);	boolean	b	=	s.equals(s1);	boolean	b	=	s.startsWith(s1);	boolean	b	=	s.endsWith(s1);
boolean	b	=	s.contains(s1);	String	s1	=	s.trim();	String	s1	=	s.toUpperCase();	String	s1	=	s.toLowerCase();	int	index	=	s.indexOf(ch);	int	index	=	s.lastIndexOf(ch);	String	s1	=	s.substring(ch);	String	s1	=	s.substring(i,j);	char[]	chs	=	s.toCharArray();	boolean	b	=	s.matches(regex);	String	s1	=	s.replaceAll(regex,repl);	String[]	tokens	=	s.split(regex);
ArrayList	list	=	new	ArrayList();	list.add(object);	list.add(index,	object);	list.clear();	Object	o	=	list.get(index);	boolean	b	=	list.isEmpty();	boolean	b	=	list.contains(object);	int	i	=	list.size();	list.remove(index);	list.set(index,	object);	int	i	=	list.indexOf(object);	int	i	=	list.lastIndexOf(object);	printf	Method	System.out.printf("%b	%c	%d	%f	%e	%s",	true,	'A',
45,	45.5,	45.5,	"Welcome");	System.out.printf("%-5d	%10.2f	%10.2e	%8s",	45,	45.5,	45.5,	"Welcome");	Companion	Web	site:	www.pearsonhighered.com/liang	Uploaded	by	[StormRG]	...	Ngày	đăng:	03/04/2021,	11:36	INTRODUCTION	TO	JAVA	®	PROGRAMMING	COMPREHENSIVE	VERSION	Tenth	Edition	Y	Daniel	Liang	Armstrong	Atlantic	State
University	Boston	Columbus	Indianapolis	New	York	San	Francisco	Upper	Saddle	River	Amsterdam	Cape	Town	Dubai	London	Madrid	Milan	Munich	Paris	Montreal	Toronto	Delhi	Mexico	City	Sao	Paulo	Sydney	Hong	Kong	Seoul	Singapore	Taipei	Tokyo	To	Samantha,	Michael,	and	Michelle	Editorial	Director,	ECS:	Marcia	Horton	Executive	Editor:	Tracy
Johnson	(Dunkelberger)	Editorial	Assistant:	Jenah	Blitz-Stoehr	Director	of	Marketing:	Christy	Lesko	Marketing	Manager:	Yez	Alayan	Marketing	Assistant:	Jon	Bryant	Director	of	Program	Management:	Erin	Gregg	Program	Management-Team	Lead:	Scott	Disanno	Program	Manager:	Carole	Snyder	Project	Management-Team	Lead:	Laura	Burgess
Project	Manager:	Robert	Engelhardt	Procurement	Specialist:	Linda	Sager	Cover	Designer:	Marta	Samsel	Permissions	Supervisor:	Michael	Joyce	Permissions	Administrator:	Jenell	Forschler	Director,	Image	Asset	Services:	Annie	Atherton	Manager,	Visual	Research:	Karen	Sanatar	Image	Permission	Coordinator:	Cover	Art:	©	Blend	Images—PBNJ
Productions/Getty	Images	Media	Project	Manager:	Renata	Butera	Full-Service	Project	Management:	Haseen	Khan,	Laserwords	Pvt	Ltd	Credits	and	acknowledgments	borrowed	from	other	sources	and	reproduced,	with	permission,	in	this	textbook	appear	on	the	appropriate	page	within	text	Microsoft®	and	Windows®	are	registered	trademarks	of	the
Microsoft	Corporation	in	the	U.S.A	and	other	countries	Screen	shots	and	icons	reprinted	with	permission	from	the	Microsoft	Corporation	This	book	is	not	sponsored	or	endorsed	by	or	affiliated	with	the	Microsoft	Corporation	Copyright	©	2015,	2013,	2011	Pearson	Education,	Inc.,	publishing	as	Prentice	Hall,	Lake	Street,	Upper	Saddle	River,	New
Jersey,	07458	All	rights	reserved	Printed	in	the	United	States	of	America	This	publication	is	protected	by	Copyright,	and	permission	should	be	obtained	from	the	publisher	prior	to	any	prohibited	reproduction,	storage	in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,	electronic,	mechanical,	photocopying,	recording,	or	likewise	To
obtain	permission(s)	to	use	material	from	this	work,	please	submit	a	written	request	to	Pearson	Education,	Inc.,	Permissions	Department,	One	Lake	Street,	Upper	Saddle	River,	New	Jersey	07458,	or	you	may	fax	your	request	to	201-236-3290	Many	of	the	designations	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as
trademarks	Where	those	designations	appear	in	this	book,	and	the	publisher	was	aware	of	a	trademark	claim,	the	designations	have	been	printed	in	initial	caps	or	all	caps	Library	of	Congress	Cataloging-in-Publication	Data	available	upon	request	10	ISBN	10:	0-13-376131-2	ISBN	13:	978-0-13-376131-3	PREFACE	Dear	Reader,	Many	of	you	have
provided	feedback	on	earlier	editions	of	this	book,	and	your	comments	and	suggestions	have	greatly	improved	the	book	This	edition	has	been	substantially	enhanced	in	presentation,	organization,	examples,	exercises,	and	supplements	The	new	edition:	■	Replaces	Swing	with	JavaFX	JavaFX	is	a	new	framework	for	developing	Java	GUI	programs
JavaFX	greatly	simplifies	GUI	programming	and	is	easier	to	learn	than	Swing	■	Introduces	exception	handling,	abstract	classes,	and	interfaces	before	GUI	programming	to	enable	the	GUI	chapters	to	be	skipped	completely	if	the	instructor	chooses	not	to	cover	GUI	■	Covers	introductions	to	objects	and	strings	earlier	in	Chapter	to	enable	students	to
use	objects	and	strings	to	develop	interesting	programs	early	■	Includes	many	new	interesting	examples	and	exercises	to	stimulate	student	interests	More	than	100	additional	programming	exercises	are	provided	to	instructors	only	on	the	Companion	Website	Please	visit	www.pearsonhighered.com/liang	for	a	complete	list	of	new	features	as	well	as
correlations	to	the	previous	edition	The	book	is	fundamentals	first	by	introducing	basic	programming	concepts	and	techniques	before	designing	custom	classes	The	fundamental	concepts	and	techniques	of	selection	statements,	loops,	methods,	and	arrays	are	the	foundation	for	programming	Building	this	strong	foundation	prepares	students	to	learn
object-oriented	programming	and	advanced	Java	programming	This	book	teaches	programming	in	a	problem-driven	way	that	focuses	on	problem	solving	rather	than	syntax	We	make	introductory	programming	interesting	by	using	thoughtprovoking	problems	in	a	broad	context	The	central	thread	of	early	chapters	is	on	problem	solving	Appropriate
syntax	and	library	are	introduced	to	enable	readers	to	write	programs	for	solving	the	problems	To	support	the	teaching	of	programming	in	a	problem-driven	way,	the	book	provides	a	wide	variety	of	problems	at	various	levels	of	difficulty	to	motivate	students	To	appeal	to	students	in	all	majors,	the	problems	cover	many	application	areas,	including
math,	science,	business,	financial,	gaming,	animation,	and	multimedia	The	book	seamlessly	integrates	programming,	data	structures,	and	algorithms	into	one	text	It	employs	a	practical	approach	to	teach	data	structures	We	first	introduce	how	to	use	various	data	structures	to	develop	efficient	algorithms,	and	then	show	how	to	implement	these	data
structures	Through	implementation,	students	gain	a	deep	understanding	on	the	efficiency	of	data	structures	and	on	how	and	when	to	use	certain	data	structures	Finally	we	design	and	implement	custom	data	structures	for	trees	and	graphs	The	book	is	widely	used	in	the	introductory	programming,	data	structures,	and	algorithms	courses	in	the
universities	around	the	world	This	comprehensive	version	covers	fundamentals	of	programming,	object-oriented	programming,	GUI	programming,	data	structures,	algorithms,	concurrency,	networking,	database,	and	Web	programming	It	is	designed	to	prepare	students	to	become	proficient	Java	programmers	A	brief	version	(Introduction	to	Java
Programming,	Brief	Version,	Tenth	Edition)	is	available	for	a	first	course	on	programming,	commonly	known	as	CS1	The	brief	version	contains	the	first	18	chapters	of	the	comprehensive	version	The	first	13	chapters	are	appropriate	for	preparing	the	AP	Computer	Science	exam	The	best	way	to	teach	programming	is	by	example,	and	the	only	way	to
learn	programming	is	by	doing	Basic	concepts	are	explained	by	example	and	a	large	number	of	exercises	what	is	new?	phones	This	book	uses	Java	SE	to	introduce	Java	programming	Java	SE	is	the	foundation	upon	which	all	other	Java	technology	is	based	There	are	many	versions	of	Java	SE	The	latest,	Java	SE	8,	is	used	-	Xem	thêm	-	Xem	thêm:
Introduction	to	JAVA	programming	comprehensive	version	10th	edition	HdyvcmIjDRDf32W75IUPx7qd8CYW6crj	pdf	,	Java	Enterprise	Edition	(Java	EE)	to	develop	server-side	applications,	such	as	Java	servlets,	JavaServer	Pages	(JSP),	and	JavaServer	Faces	(JSF)	■	Java	Micro	Edition	(Java	ME)	to	develop	applications...	:	-1	System.out.println(number
%	==	?	to	prepare	students	to	become	proficient	Java	programmers	A	brief	version	(Introduction	to	Java	Programming,	Brief	Version,	Tenth	Edition)	is	available	for	a	first	course	on	programming,	commonly...	This	edition	is	completely	revised	in	every	detail	to	enhance	clarity,	presentation,	content,	examples,	and	exercises	The	major	improvements
are	as	follows:	■	Updated	to	Java	■	Since	Swing	is	replaced	by	JavaFX,	all	GUI	examples	and	exercises	are	revised	using	JavaFX	■	Lambda	expressions	are	used	to	simplify	coding	in	JavaFX	and	threads	■	More	than	100	additional	programming	exercises	with	solutions	are	provided	to	the	instructor	on	the	Companion	Website	These	exercises	are	not
printed	in	the	text	■	Math	methods	are	introduced	earlier	in	Chapter	to	enable	students	to	write	code	using	math	functions	■	Strings	are	introduced	earlier	in	Chapter	to	enable	students	to	use	objects	and	strings	to	develop	interesting	programs	early	■	The	GUI	chapters	are	moved	to	after	abstract	classes	and	interfaces	so	that	these	chapters	can
be	easily	skipped	if	the	instructor	chooses	not	to	cover	GUI	■	Chapters	4,	14,	15,	and	16	are	brand	new	chapters	■	Chapters	28	and	29	have	been	substantially	revised	with	simpler	implementations	for	minimum	spanning	trees	and	shortest	paths	Preface	v	Pedagogical	Features	The	book	uses	the	following	elements	to	help	students	get	the	most	from
the	material:	■	The	Objectives	at	the	beginning	of	each	chapter	list	what	students	should	learn	from	the	chapter	This	will	help	them	determine	whether	they	have	met	the	objectives	after	completing	the	chapter	■	The	Introduction	opens	the	discussion	with	representative	problems	to	give	the	reader	an	overview	of	what	to	expect	from	the	chapter	■
Key	Points	highlight	the	important	concepts	covered	in	each	section	■	Check	Points	provide	review	questions	to	help	students	track	their	progress	as	they	read	through	the	chapter	and	evaluate	their	learning	■	Problems	and	Case	Studies,	carefully	chosen	and	presented	in	an	easy-to-follow	style,	teach	problem	solving	and	programming	concepts	The
book	uses	many	small,	simple,	and	stimulating	examples	to	demonstrate	important	ideas	■	The	Chapter	Summary	reviews	the	important	subjects	that	students	should	understand	and	remember	It	helps	them	reinforce	the	key	concepts	they	have	learned	in	the	chapter	■	Quizzes	are	accessible	online,	grouped	by	sections,	for	students	to	self-test	on
programming	concepts	and	techniques	■	Programming	Exercises	are	grouped	by	sections	to	provide	students	with	opportunities	to	apply	the	new	skills	they	have	learned	on	their	own	The	level	of	difficulty	is	rated	as	easy	(no	asterisk),	moderate	(*),	hard	(**),	or	challenging	(***)	The	trick	of	learning	programming	is	practice,	practice,	and	practice	To
that	end,	the	book	provides	a	great	many	exercises	Additionally,	more	than	100	programming	exercises	with	solutions	are	provided	to	the	instructors	on	the	Companion	Website	These	exercises	are	not	printed	in	the	text	■	Notes,	Tips,	Cautions,	and	Design	Guides	are	inserted	throughout	the	text	to	offer	valuable	advice	and	insight	on	important

aspects	of	program	development	Note	Provides	additional	information	on	the	subject	and	reinforces	important	concepts	Tip	Teaches	good	programming	style	and	practice	Caution	Helps	students	steer	away	from	the	pitfalls	of	programming	errors	Design	Guide	Provides	guidelines	for	designing	programs	Flexible	Chapter	Orderings	The	book	is
designed	to	provide	flexible	chapter	orderings	to	enable	GUI,	exception	handling,	recursion,	generics,	and	the	Java	Collections	Framework	to	be	covered	earlier	or	later	The	diagram	on	the	next	page	shows	the	chapter	dependencies	vi	Preface	Part	I:	Fundamentals	of	Programming	Chapter	Introduction	to	Computers,	Programs,	and	Java	Chapter
Elementary	Programming	Chapter	Selections	Part	II:	Object-Oriented	Programming	Part	IV:	Data	Structures	and	Algorithms	Part	III:	GUI	Programming	Chapter	Objects	and	Classes	Chapter	14	JavaFX	Basics	Ch	Chapter	18	Recursion	Chapter	10	Thinking	in	Objects	Chapter	15	Event-Driven	Programming	and	Animations	Ch	13	Chapter	19	Generics
Chapter	11	Inheritance	and	Polymorphism	Chapter	12	Exception	Handling	and	Text	I/O	Chapter	Mathematical	Functions,	Characters,	and	Strings	Chapter	13	Abstract	Classes	and	Interfaces	Chapter	Loops	Chapter	17	Binary	I/O	Chapter	16	JavaFX	Controls	and	Multimedia	Ch	16	Chapter	30	Multithreading	and	Parallel	Programming	Chapter	31
Networking	Chapter	20	Lists,	Stacks,	Queues,	and	Priority	Queues	Chapter	32	Java	Database	Programming	Chapter	21	Sets	and	Maps	Chapter	33	JavaServer	Faces	Chapter	34	Advanced	GUI	Programming	Chapter	22	Developping	Efficient	Algorithms	Chapter	35	Advanced	Database	Programming	Chapter	23	Sorting	Chapter	Methods	Chapter	24
Implementing	Lists,	Stacks,	Queues,	and	Priority	Queues	Chapter	Single-Dimensional	Arrays	Chapter	25	Binary	Search	Trees	Chapter	Multidimensional	Arrays	Part	V:	Advanced	Java	Programming	Chapter	36	Internationalization	Chapter	37	Servlets	Note:	Chapters	1–18	are	in	the	brief	version	of	this	book	Chapter	26	AVL	Trees	Note:	Chapters	1–33
are	in	the	comprehensive	version	Chapter	27	Hashing	Note:	Chapters	34–42	are	bonus	chapters	available	from	the	Companion	Website	Chapter	28	Graphs	and	Applications	Chapter	38	JavaServer	Pages	Chapter	39	Web	Services	Chapter	29	Weighted	Graphs	and	Applications	Chapter	40	2-4	Trees	and	BTrees	Chapter	41	Red-Black	Trees	Ch	Chapter
42	Testing	Using	JUnit	Preface	vii	Organization	of	the	Book	The	chapters	can	be	grouped	into	five	parts	that,	taken	together,	form	a	comprehensive	introduction	to	Java	programming,	data	structures	and	algorithms,	and	database	and	Web	programming	Because	knowledge	is	cumulative,	the	early	chapters	provide	the	conceptual	basis	for
understanding	programming	and	guide	students	through	simple	examples	and	exercises;	subsequent	chapters	progressively	present	Java	programming	in	detail,	culminating	with	the	development	of	comprehensive	Java	applications	The	appendixes	contain	a	mixed	bag	of	topics,	including	an	introduction	to	number	systems,	bitwise	operations,	regular
expressions,	and	enumerated	types	Part	I:	Fundamentals	of	Programming	(Chapters	1–8)	The	first	part	of	the	book	is	a	stepping	stone,	preparing	you	to	embark	on	the	journey	of	learning	Java	You	will	begin	to	learn	about	Java	(Chapter	1)	and	fundamental	programming	techniques	with	primitive	data	types,	variables,	constants,	assignments,
expressions,	and	operators	(Chapter	2),	selection	statements	(Chapter	3),	mathematical	functions,	characters,	and	strings	(Chapter	4),	loops	(Chapter	5),	methods	(Chapter	6),	and	arrays	(Chapters	7–8)	After	Chapter	7,	you	can	jump	to	Chapter	18	to	learn	how	to	write	recursive	methods	for	solving	inherently	recursive	problems	Part	II:	Object-
Oriented	Programming	(Chapters	9–13,	and	17)	This	part	introduces	object-oriented	programming	Java	is	an	object-oriented	programming	language	that	uses	abstraction,	encapsulation,	inheritance,	and	polymorphism	to	provide	great	flexibility,	modularity,	and	reusability	in	developing	software	You	will	learn	programming	with	objects	and	classes
(Chapters	9–10),	class	inheritance	(Chapter	11),	polymorphism	(Chapter	11),	exception	handling	(Chapter	12),	abstract	classes	(Chapter	13),	and	interfaces	(Chapter	13)	Text	I/O	is	introduced	in	Chapter	12	and	binary	I/O	is	discussed	in	Chapter	17	Part	III:	GUI	Programming	(Chapters	14–16	and	Bonus	Chapter	34)	JavaFX	is	a	new	framework	for
developing	Java	GUI	programs	It	is	not	only	useful	for	developing	GUI	programs,	but	also	an	excellent	pedagogical	tool	for	learning	object-oriented	programming	This	part	introduces	Java	GUI	programming	using	JavaFX	in	Chapters	14–16	Major	topics	include	GUI	basics	(Chapter	14),	container	panes	(Chapter	14),	drawing	shapes	(Chapter	14),
event-driven	programming	(Chapter	15),	animations	(Chapter	15),	and	GUI	controls	(Chapter	16),	and	playing	audio	and	video	(Chapter	16)	You	will	learn	the	architecture	of	JavaFX	GUI	programming	and	use	the	controls,	shapes,	panes,	image,	and	video	to	develop	useful	applications	Chapter	34	covers	advanced	features	in	JavaFX	Part	IV:	Data
Structures	and	Algorithms	(Chapters	18–29	and	Bonus	Chapters	40–41)	This	part	covers	the	main	subjects	in	a	typical	data	structures	and	algorithms	course	Chapter	18	introduces	recursion	to	write	methods	for	solving	inherently	recursive	problems	Chapter	19	presents	how	generics	can	improve	software	reliability	Chapters	20	and	21	introduce	the
Java	Collection	Framework,	which	defines	a	set	of	useful	API	for	data	structures	Chapter	22	discusses	measuring	algorithm	efficiency	in	order	to	choose	an	appropriate	algorithm	for	applications	Chapter	23	describes	classic	sorting	algorithms	You	will	learn	how	to	implement	several	classic	data	structures	lists,	queues,	and	priority	queues	in	Chapter
24	Chapters	25	and	26	introduce	binary	search	trees	and	AVL	trees	Chapter	27	presents	hashing	and	implementing	maps	and	sets	using	hashing	Chapters	28	and	29	introduce	graph	applications	The	2-4	trees,	B-trees,	and	red-black	trees	are	covered	in	Bonus	Chapters	40–41	Part	V:	Advanced	Java	Programming	(Chapters	30–33	and	Bonus	Chapters
35–39,	42)	This	part	of	the	book	is	devoted	to	advanced	Java	programming	Chapter	30	treats	the	use	of	multithreading	to	make	programs	more	responsive	and	interactive	and	introduces	parallel	programming	Chapter	31	discusses	how	to	write	programs	that	talk	with	each	other	from	different	hosts	over	the	Internet	Chapter	32	introduces	the	use	of
Java	to	develop	database	viii	Preface	projects	Chapter	33	introduces	modern	Web	application	development	using	JavaServer	Faces	Chapter	35	delves	into	advanced	Java	database	programming	Chapter	36	covers	the	use	of	internationalization	support	to	develop	projects	for	international	audiences	Chapters	37	and	38	introduce	how	to	use	Java
servlets	and	JavaServer	Pages	to	generate	dynamic	content	from	Web	servers	Chapter	39	discusses	Web	services	Chapter	42	introduces	testing	Java	programs	using	JUnit	Appendixes	This	part	of	the	book	covers	a	mixed	bag	of	topics	Appendix	A	lists	Java	keywords	Appendix	B	gives	tables	of	ASCII	characters	and	their	associated	codes	in	decimal	and
in	hex	Appendix	C	shows	the	operator	precedence	Appendix	D	summarizes	Java	modifiers	and	their	usage	Appendix	E	discusses	special	floating-point	values	Appendix	F	introduces	number	systems	and	conversions	among	binary,	decimal,	and	hex	numbers	Finally,	Appendix	G	introduces	bitwise	operations	Appendix	H	introduces	regular	expressions
Appendix	I	covers	enumerated	types	Java	Development	Tools	IDE	tutorials	You	can	use	a	text	editor,	such	as	the	Windows	Notepad	or	WordPad,	to	create	Java	programs	and	to	compile	and	run	the	programs	from	the	command	window	You	can	also	use	a	Java	development	tool,	such	as	NetBeans	or	Eclipse	These	tools	support	an	integrated
development	environment	(IDE)	for	developing	Java	programs	quickly	Editing,	compiling,	building,	executing,	and	debugging	programs	are	integrated	in	one	graphical	user	interface	Using	these	tools	effectively	can	greatly	increase	your	programming	productivity	NetBeans	and	Eclipse	are	easy	to	use	if	you	follow	the	tutorials	Tutorials	on	NetBeans
and	Eclipse	can	be	found	under	Tutorials	on	the	Student	Companion	Website	at	www.pearsonhighered.com/liang	Student	Resource	Website	The	Student	Resource	Website	www.pearsonhighered.com/liang	provides	access	to	some	of	the	following	resources	Other	resources	are	available	using	the	student	access	code	printed	on	the	inside	front	cover
of	this	book	(For	students	with	a	used	copy	of	this	book,	you	can	purchase	access	to	the	premium	student	resources	through	www.pearsonhighered.com/liang.)	■	Answers	to	review	questions	■	Solutions	to	even-numbered	programming	exercises	■	Source	code	for	the	examples	in	the	book	■	Interactive	quiz	(organized	by	sections	for	each	chapter)
■	Supplements	■	Debugging	tips	■	Algorithm	animations	■	Errata	Instructor	Resource	Website	The	Instructor	Resource	Website,	accessible	from	www.pearsonhighered.com/liang,	provides	access	to	the	following	resources:	■	Microsoft	PowerPoint	slides	with	interactive	buttons	to	view	full-color,	syntax-highlighted	source	code	and	to	run	programs
without	leaving	the	slides	■	Solutions	to	all	programming	exercises	Students	will	have	access	to	the	solutions	of	evennumbered	programming	exercises	Preface	ix	■	More	than	100	additional	programming	exercises	organized	by	chapters	These	exercises	are	available	only	to	the	instructors	Solutions	to	these	exercises	are	provided	■	Web-based	quiz
generator	(Instructors	can	choose	chapters	to	generate	quizzes	from	a	large	database	of	more	than	two	thousand	questions.)	■	Sample	exams	Most	exams	have	four	parts:	■	Multiple-choice	questions	or	short-answer	questions	■	Correct	programming	errors	■	Trace	programs	■	Write	programs	■	ACM/IEEE	Curricula	2013	The	new	ACM/IEEE
Computer	Science	Curricula	2013	defines	the	Body	of	Knowledge	organized	into	18	Knowledge	Areas	To	help	instructors	design	the	courses	based	on	this	book,	we	provide	sample	syllabi	to	identify	the	Knowledge	Areas	and	Knowledge	Units	The	sample	syllabi	are	for	a	three	semester	course	sequence	and	serve	as	an	example	for	institutional
customization	Instructors	can	access	the	syllabi	at	www.pearsonhighered.com/liang	■	Sample	exams	with	ABET	course	assessment	■	Projects	In	general,	each	project	gives	a	description	and	asks	students	to	analyze,	design,	and	implement	the	project	Some	readers	have	requested	the	materials	from	the	Instructor	Resource	Website	Please
understand	that	these	are	for	instructors	only	Such	requests	will	not	be	answered	Online	Practice	and	Assessment	with	MyProgrammingLab	MyProgrammingLab	helps	students	fully	grasp	the	logic,	semantics,	and	syntax	of	programming	Through	practice	exercises	and	immediate,	personalized	feedback,	MyProgrammingLab	improves	the
programming	competence	of	beginning	students	who	often	struggle	with	the	basic	concepts	and	paradigms	of	popular	high-level	programming	languages	A	self-study	and	homework	tool,	a	MyProgrammingLab	course	consists	of	hundreds	of	small	practice	problems	organized	around	the	structure	of	this	textbook	For	students,	the	system	automatically
detects	errors	in	the	logic	and	syntax	of	their	code	submissions	and	offers	targeted	hints	that	enable	students	to	figure	out	what	went	wrong—and	why	For	instructors,	a	comprehensive	gradebook	tracks	correct	and	incorrect	answers	and	stores	the	code	inputted	by	students	for	review	MyProgrammingLab	is	offered	to	users	of	this	book	in	partnership
with	Turing’s	Craft,	the	makers	of	the	CodeLab	interactive	programming	exercise	system	For	a	full	demonstration,	to	see	feedback	from	instructors	and	students,	or	to	get	started	using	MyProgrammingLab	in	your	course,	visit	www.myprogramminglab.com	VideoNotes	We	are	excited	about	the	new	VideoNotes	feature	that	is	found	in	this	new	edition
These	videos	provide	additional	help	by	presenting	examples	of	key	topics	and	showing	how	to	solve	problems	completely,	from	design	through	coding	VideoNotes	are	available	from	www.pearsonhighered.com/liang	VideoNote	1308	Index	Maps	(continued)	singleton	and	unmodifiable,	816–817	summary,	817–818	synchronized	collections	for,	1127–
1128	TestMap.java	example,	813–814	tree	maps	see	TreeMap	class	Maps,	implementing	with	hashing	MyHashMap.java	example,	997–1002	MyMap.java	example,	996–997	overview	of,	995–996	TestMyHashMap.java,	1002–1003	Marker	interfaces,	513	Match	braces,	in	Welcome.java,	13	matches	method,	strings,	342	Math	class	BigInteger	and
BigDecimal	classes,	384–385	complex	numbers,	531–532	exponent	methods,	121	invoking	object	methods,	331	methods	generally,	120	pow(a,	b)	method,	48	random	method,	87–88,	98–99,	122	rounding	methods,	121–122	service	methods,	122	trigonometric	methods,	120–121	Matrices	adjacency	matrices	for	representing	edges,	1021–1022	case
study:	designing	class	for	matrix	using	generic	types,	752–753	GenericMatrix.java	example,	753–755	IntegerMatrix.java	example,	755	RationalMatrix.java	example,	755–756	TestIntegerMatrix.java	example,	756	TestRationalMatrix.java	example,	756–757	two-dimensional	arrays	for	storing,	288–289	max	method	defining	and	invoking,	206–208	finding
maximum	element	in	lists,	776	finding	maximum	number	in	lists,	1132–1133	GeometricObjectComparator.java	example,	773	MaxUsingGenericType.java	example,	746–747	overloading,	220	overview	of,	122	ParallelMax.java,	1132–1133	maxRow	variable,	for	finding	largest	sum,	292	Mbps	(million	bits	per	second),	MBs	(megabytes),	of	storage,	Media,
662–665	MediaPlayer,	662–665	MediaView,	662–665	Megabytes	(MBs),	of	storage,	Megahertz	(MHz),	clock	speed,	Memory,	computers,	3–4	Merge	sorts	CreateFile.java	example	of	external	sort,	884	heap	sort	compared	with,	880	merge	sort	algorithms,	867	MergeSort.java	example,	867–869	overview	of,	866	ParallelMergeSort.java,	1130–1132	quick
sorts	compared	with,	874	recurrence	relations	and,	829	time	complexity	of,	870	mergeSort	method,	868–869	Mersenne	prime,	240	MessagePanel	class	DisplayClock.java,	573–574	ClockPane.java,	574–576	Metadata	retrieval,	from	databases	database	metadata,	1202–1203	obtaining	tables,	1204	overview	of,	1202	result	set	metadata,	1204–1205
Meters,	converting	to/from	feet,	236	Method	header,	205	Method	modifiers,	205,	1270–1271	Method	signature,	205	Methods	abstraction	and,	225–226	accessing	object	methods,	330–331	calling,	206–208	case	study:	converting	decimals	to	hexadecimals,	182–183	case	study:	generating	random	numbers,	223–225	case	study:	generic	method	for
sorting	array,	744–745	class,	337–338	Collection	interface,	764	commenting,	18	Comparator	interface,	772	defining,	204–206	deprecated	methods	of	Thread	class,	1103	generic,	742–744	identifiers,	39–40	implementation	details,	229–232	invoking,	206–208,	331,	743	key	terms,	232	modularizing	code,	215–217	naming	conventions,	44	object	actions
defined	by,	322–323	overloading,	219–222	overriding,	970	overview	of,	203–204	passing	arrays	to,	257–260	passing	objects	to,	347–351	passing	parameters	by	values,	212–215	passing	to	two-dimensional	arrays,	293–294	quiz	and	exercises,	234–244	recursive	methods,	706	returning	arrays	from,	260–261	rounding,	121	static	see	Static	methods
stepwise	refinement,	225–226,	232	summary,	233	synchronization	wrapper	methods,	1127	thread	coordination,	1118–1119	top-down	and/or	bottom-up	implementation,	227–229	top-down	design,	226–227	tracing	or	stepping	over	as	debugging	technique,	106	trigonometric,	120–121	variable	scope	and,	222–223	void	method	example,	209–211	MHz
(Megahertz),	clock	speed,	Microsoft	Access	see	Access	Microsoft	Windows,	Million	bits	per	second	(Mbps),	method	finding	minimum	element	in	lists,	776	Math	class,	122	Index	1309	Minimum	spanning	trees	(MSTs)	MST	algorithm,	1075–1076	overview	of,	1072	Prim’s	minimum	spanning	tree	algorithm,	1073–1075	TestMinimumSpanningTree.java,
1076–1078	weighted	graphs	and,	1062	WeightedGraph	class,	1067–1069	Mnemonics,	in	assembly	language,	Modeling,	graphs	and,	1024–1028	Model-View-Controller	(MVC)	architecture,	1217	Modems	(modulator/demodulator),	Modifier	keys,	on	keyboards,	Modifiers	list	of,	1270–1271	method	modifier,	205	Modularizing	code
GreatestCommonDivisorMethod.java,	215–216	overview	of,	215	PrimeNumberMethod.java,	216–217	Monitors	(displays),	Monitors/monitoring,	threads	and,	1118	Motherboard,	Mouse,	as	I/O	device,	MouseEvents	ControlCircleWithMouseAndKey.java,	605–606	event-driven	programming,	602–603	MouseEvent,	602–603	MST	algorithm,	1075–1076	MST
class,	1075–1076	MSTs	see	Minimum	spanning	trees	(MSTs)	Multi-dimensional	arrays	see	Arrays,	multi-dimensional	Multimedia	see	JavaFX	UI	controls	Multiple	choice	test,	294–296	Multiplication	(*=)	assignment	operator,	54	Multiplication	operator	(*),	15,	46,	50	Multiplication	table,	176	Multiplicities,	in	object	composition,	373	Multiprocessing,	10
Multiprogramming,	10	Multithreading,	10	blocking	queues,	1122–1124	case	study:	clock	with	audio,	1139–1142	case	study:	flashing	text,	1105–1106	case	study:	producer/consumer,	1119–1122	cooperation	among	threads,	114–1119	creating	tasks	and	threads,	1098–1099	deadlocks	and,	1126	key	terms,	1133	MultiThreadServer.java,	1149–1151
overview	of,	1097–1098	quiz	and	exercises,	1134–1138	semaphores,	1124–1126	servers	serving	multiple	clients,	1149	summary,	1133–1134	synchronization	using	locks,	1112–1114	synchronized	collections,	1127–1128	synchronized	keyword,	1111	synchronizing	statements,	1111–1112	TaskThreadDemo.java,	1100–1101	Thread	class,	1102–1104
thread	concepts,	1198	thread	pools,	1106–1108	thread	states,	1126–1127	thread	synchronization,	1108–1111	Multi-way	if-else	statements	in	computing	taxes,	90–93	overview	of,	81–83	Mutator	methods	see	Setter	(mutator)	methods	MySQL	creating	databases,	1180–1181	creating	tables,	1181–1182	creating	user	account	in,	1179–1180	JDBC	drivers
for	accessing	Oracle	databases,	1189–1192	stopping/starting,	1180	tutorials	on,	1178	N	Named	constants	see	Constants	Naming	conventions	class	design	guidelines,	526	interfaces,	518	programming	and,	44	SQL	tables,	1181	wrapper	classes,	380	Naming	rules,	identifiers,	39–40	NavigableMap	interface,	813	N-by-n	matrix,	238	Negative	angles,
drawing	arcs,	569	Neighbors	depth-first	searches	(DFS),	1038	vertices,	1018,	1022–1023	Nested	classes	see	Inner	(nested)	classes	Nested	if	statements	in	computing	body	mass	index,	89–90	in	computing	taxes,	90–93	overview	of,	81	Nested	loops,	176–177,	291,	824–825	NetBeans	built	in	debugging,	106	for	creating/editing	Java	source	code,	15	for
developing	JSF	applications,	1214	Network	interface	cards	(NICs),	Networking	case	study:	distributed	tic-tac-toe	games,	1156–1157	client	sockets,	1141–1142	client.java,	1145–1147	client/server	computing,	1140	client/server	example,	1143	data	transmission	through	sockets,	1142	InetAddress	class,	1147–1148	multiple	clients	connected	to	single
server,	1148–1151	overview	of,	1139–1140	quiz	and	exercises,	1168–1171	sending	and	receiving	objects,	1151–1156	server	sockets,	1140–1141	server.java,	1143–1144	summary,	1168	TicTacToeClient.java,	1162–1168	TicTacToeConstants.java,	1157	TicTacToeServer.java,	1157–1162	new	operator	creating	arrays,	246–247	creating	objects,	329	next
method,	whitespace	characters	and,	133	nextLine	method,	whitespace	characters	and,	133	1310	Index	Next-line	style,	block	styles,	19	NICs	(network	interface	cards),	Nine	tails	problem	graphic	approach	to,	1048–1053	reducing	to	shortest	path	problem,	1086–1090	No-arg	constructors	class	design	guidelines,	526	Loan	class,	368	wrapper	classes	not
having,	381	Node,	536–539	Nodes,	AVL	trees	balancing	on	a	path,	970–971	creating,	973	creating	and	storing	in	AVLTreeNode,	969–970	deleting	elements,	972	rotation,	973–974	Nodes,	binary	trees	deleting	leaf	node,	944–945	overview	of,	930	representing	binary	search	trees,	931	Nodes,	JavaFX,	545–546	Nodes,	linked	lists	creating,	910	deleting,
914–916	overview	of,	906–908	storing	elements	in,	911	Nonleaves,	finding,	960	Not	(!)	logical	operator,	93–97	Not	equal	to	(!=)	comparison	operator,	76	NotSerializableException,	695	null	values,	objects,	331–332	NullPointerException,	as	runtime	error,	332	Number	class	case	study:	abstract	number	class,	501	as	root	class	for	numeric	wrapper
classes,	585	Numbers/numeric	types	abstract	number	class,	501–503	binary	see	Binary	numbers	case	study:	converting	hexadecimals	to	decimals,	217–219	case	study:	displaying	prime	numbers,	188–190	case	study:	generating	random	numbers,	223–225	case	study:	guessing	numbers,	161–163	casting	to/from	char	types,	127	conversion	between
numeric	types,	56–58,	364	converting	to/from	strings,	389–390	decimal	see	Decimal	numbers	double	see	double	floating-point	see	Floating-point	numbers	(float	data	type)	generating	random	numbers,	87–88	GreatestCommonDivisorMethod.java,	215–216	hexadecimal	see	Hexadecimal	numbers	integers	see	Integers	(int	data	type)
LargestNumbers.java,	502–503	overview	of,	44–46	PrimeNumberMethod.java,	216–217	processing	large	numbers,	384–385	types	of	number	systems,	1273	Numerators,	in	rational	numbers,	520	Numeric	keypads,	on	keyboards,	Numeric	literals,	48–49	Numeric	operators	applied	to	characters,	127	overview	of,	46–47	O	Object	class,	422–423,	431–432
Object	I/O	see	ObjectInputStream/ObjectOutputStream	classes	Object	member	access	operator	(.),	330,	429	Object	reference	variables,	330	ObjectInputStream/ObjectOutputStream	classes	overview	of,	692–693	serializable	interface,	695–696	Serializing	arrays,	696–697	TestObjectInputStream.java,	694	TestObjectOutputStream.java,	693–694	Object-
oriented	programming	(OOP),	322,	330,	370–373	Objects	accessing	data	and	methods	of,	330–331	accessing	via	reference	variables,	330	array	of,	351–352	ArrayList	class,	432–433	arrays	as,	259	automatic	conversion	between	primitive	types	and	wrapper	class	types,	383–384	BigInteger	and	BigDecimal	classes,	384–385	cannot	be	created	from
abstract	classes,	500	case	study:	designing	class	for	stacks,	378–380	case	study:	designing	Course	class,	376–377	casting,	427–428	CircleWithPrivateDataFields.java	example,	345–346	CircleWithStaticMembers.java	example,	338–339	class	abstraction	and	encapsulation,	366–367	class	design	guidelines,	525–527	classes	from	Java	Library,	334
comparing	primitive	variables	with	reference	variables,	332–334	composing,	374–375	constructors,	329	creating,	324–325	data	field	encapsulation	for	maintaining	classes,	344–345	Date	class,	334–335	defining	classes	for,	322–324	edges	defined	as,	1021	equals	method	of	Object	class,	431–432	event	listener	object,	589	event	objects,	588	immutable,
353–354	inheritance	see	inheritance	key	terms,	358,	399	Loan.java,	368–370	null	values,	331–332	Object	class,	422–423	object-oriented	thinking,	370–373	overview	of,	321–322,	365–366	passing	to	methods,	347–351	polymorphism,	123	processing	primitive	data	type	values	as,	380–383	quiz	and	exercises,	359–364,	399–408	Random	class,	355–356
reference	data	fields	and,	331	representing	edges,	1021	runnable	objects,	1098	sending	and	receiving	over	network,	1151–1156	SimpleCircle.java	example,	324–325	static	variables,	constants,	and	methods	and,	337–338	summary,	359,	398–399	TestCircleWithPrivateDataFields.java	example,	346–347	TestCircleWithStaticMembers.java	example,	339–
342	Index	1311	TestLoanClass.java,	367–368	TestSimpleCircle.java	example,	324–326	TestTV.java	example,	328–329	this	reference	and,	356–358	TotalArea.java	example,	352–353	TV.java	example,	327–328	variable	scope	and,	355–356	vertices	as	object	of	any	type,	1019	visibility	modifiers,	342–344	Octal	integer	literals,	49	Off-by-one	errors	arrays
and,	251	in	loops,	160	OOP	(object-oriented	programming),	322,	330,	370–373	Open	addressing,	hashing	collision	handling	using,	989	double	hashing,	991–993	linear	probing,	989–990	quadratic	probing,	990–991	Operands	defined,	46	incompatible,	95	Operators	assignment	operator	(=),	41–43	augmented	assignment	operators,	54–55	bit	operators,
1277	comparison	operators,	76	increment	and	decrement	operators,	55–56	numeric	operators,	46–47	precedence	and	associativity,	104–106	precedence	and	associativity	chart,	1268–1269	precedence	rules,	50–51	processing,	786	SQL	arithmetic	operators,	1186	SQL	comparison	or	Boolean	operators,	1184	SQL	like,	between-between-and,	and	is	null
operators,	1185	unary	and	binary,	47	Option	buttons	See	Radio	buttons	Or	(||)	logical	operator,	93–97	Oracle	JDBC	drivers	for	accessing	Oracle	databases,	1189–1192	tutorials	on,	1178	order	by	clause,	displaying	sorted	tuples,	1187–1188	OSs	(operating	systems)	overview	of,	tasks	of,	9–10	Output	see	also	I/O	(input/output)	redirection,	167–168
streams,	678–679	OutputStream	classes	BufferedOutputStream,	688–690	case	study:	copying	files,	691–692	data	transmission	through	sockets,	1142	DataOutputStream,	684–686	DetectEndOfFile.java,	687	FileOutputStream,	681–682	FilterOutputStream,	684	ObjectOutputStream,	692–693,	1151	overview	of,	680–681	serialization	and,	695
TestDataStream.java,	686–687	TestFileStream.java,	682–683	TestObjectOutputStream.java,	693–694	Overflows	Rational	class,	524	variables,	45	Overloading	methods,	219–222	Overriding	methods,	419–422,	970	P	p	(pi),	estimating,	237	Package-private	(package-access)	visibility	modifiers,	342	Packages	organizing	classes	in,	343	organizing	programs
in,	18	Packet-based	communication,	Java	supporting,	1140	Page	Down	key,	on	keyboards,	Page	Up	key,	on	keyboards,	Pair	of	points,	algorithm	for	finding	closest,	843–846	Palindromes	case	study:	checking	if	string	is	a	palindrome,	187–188	case	study:	ignoring	nonalphanumeric	characters	when	checking	palindromes,	396–398	palindrome	integers,
234	palindromic	primes,	240	RecursivePalindrome.java,	714–715	RecursivePalindromeUsingSubstring.java,	713–714	Panels	ButtonInPane.java,	540	MessagePanel	class	see	MessagePanel	class	Parallel	edges,	1018	Parallel	programming	see	also	Multithreading	overview	of,	1128–1129	ParallelMax.java,	1132–1133	ParallelMergeSort.java,	1130–1132
Parameters	actual	parameters,	205	defining	methods	and,	204–205	generic	classes,	742	generic	methods,	744	generic	parameters	not	allowed	in	static	context,	751–752	as	local	variable,	222	order	association,	212	passing	by	values,	212–215	variable-length	argument	lists,	264–265	Parent,	539	Parentheses	(())	defining	and	invoking	methods	and,	225
in	Welcome.java,	14	Parsing	methods,	382	Pascal,	high-level	languages,	Pass-by-sharing	arrays	to	methods,	258	objects	to	methods,	348–349	Pass-by-value	arrays	to	methods,	258	Increment.java	example,	212–213	objects	to	methods,	347–348	overview	of,	212	TestPassByValue.java	example,	213–215	PaswordField,	641	PathTransition,	609–612
Passwords,	checking	if	string	is	valid	password,	238	Pentagonal	numbers,	234	Perfect	hash	function,	986	1312	Index	Perfectly	balanced	trees,	966	Pivot	element,	870	Pixels	(picture	elements)	measuring	resolution	in,	Points,	849	algorithm	for	finding	closest	pair	of,	843–846	finding	convex	hull	for	a	set	of	points,	849	Polygon	and	Polyline	overview,
569	ShowPolygon.java,	570–571	Polymorphism	CastingDemo.java	example,	428–431	overview	of,	423	PolymorphismDemo.java	example,	423	Polynomial	hash	codes,	988	Postfix	decrement	operator,	55–56	Postfix	increment	operator,	55–56	Postorder	traversal	time	complexity	of,	948	tree	traversal,	933	pow	method,	Math	class,	48	Precedence,
operator,	104–106,	1268–1270	Prefix	decrement	operator,	55–56	Prefix	increment	operator,	55–56	Prefix	notation,	794	Preorder	traversal	time	complexity	of,	948	tree	traversal,	933	PreparedStatement,	for	creating	parameterized	SQL	statements,	1197–1199	Primary	key	constraints,	integrity	constraints	in	relational	model,	1176–1178	Prime	numbers
algorithm	for	finding,	837	case	study:	displaying	prime	numbers,	188–190	comparing	prime	number	algorithms,	843	EfficientPrimeNumbers.java	example,	839–842	PrimeNumberMethod.java,	216–217	PrimeNumbers.java	example,	838–839	SieveOfEratosthenes.java	example,	842–843	types	of,	240	Primitive	types	(fundamental	types)	automatic
conversion	between	primitive	types	and	wrapper	class	types,	383–384,	739	casting,	429	comparing	parameters	of	primitive	type	with	parameters	of	reference	types,	349	comparing	primitive	variables	with	reference	variables,	332–334	converting	wrapper	object	to/from	(boxing/unboxing),	383	creating	arrays	of,	351	hash	codes	for,	987	Prim’s
minimum	spanning	tree	algorithm	Dijkstra’s	algorithm	compared	to,	1078	overview	of,	1073–1075	print	method,	PrintWriter	class,	38,	476–477,	744–745	printf	method,	PrintWriter	class,	476	Printing	arrays,	291	println	method,	PrintWriter	class,	38,	476	printStackTrace	method,	461	PrintWriter	class	case	study:	replacing	text,	480–482	writing	data
to	file	using,	476–477	for	writing	text	data,	678	Priority	queues	implementing,	924	MyPriorityQueue.java	example,	924	overview	of,	783	PriorityQueue	class,	784–785	for	storing	weighted	edges,	1063	TestPriorityQueue.java	example,	924–925	PriorityBlockingQueue	class,	1122–1123	PriorityQueue	class,	784–785	private	encapsulation	of	data	fields
and,	344–345	visibility	modifier,	343–344,	440–443	Problems	breaking	into	subproblems,	190	creating	programs	to	address,	34	solving	with	recursion,	712–713	Procedural	paradigm,	compared	with	object-oriented	paradigm,	372–373	Procedures,	205	see	also	Methods	Processing	arrays,	249–251	Programming	errors	see	also	Exception	handling
ClassCastException,	428	debugging,	106	logic	errors,	21–23	minimizing	numeric	errors	related	to	loops,	178–179	runtime	errors,	20–21	selections,	83–87	syntax	errors,	14,	20	using	generic	classes	for	detecting,	738–739	Programming	languages	assembly	language,	high-level	languages,	8–9	Java	see	Java	programming	machine	language,	overview	of,
Programming	style	block	styles,	19	comments	and,	19	indentation	and	spacing,	19	overview	of,	18–19	Programs/programming	assignment	statements	and	expressions,	41–43	augmented	assignment	operators,	54–55	case	study:	counting	monetary	units,	63–65	case	study:	displaying	current	time,	52–53	character	data	type,	125–130	coding
incrementally,	161	databases	see	Java	database	programming	evaluating	expressions	and	operator	precedence	rules,	50–51	exponent	operations,	48	identifiers,	39–40	increment	and	decrement	operators,	55–56	introduction	to,	34	with	Java	language	see	Java	programming	key	terms,	67	modularizing	code,	215–217	named	constants,	43	naming
conventions,	44	numeric	literals,	48–50	numeric	operators,	46–47	numeric	type	conversions,	56–58	numeric	types,	44–45	Index	1313	overview	of,	questions	and	exercises,	68–74	reading	input	from	console,	37–39	recursive	methods	in,	706	software	development	process,	59–63	string	data	type,	130–139	summary,	67–68	variables,	40–41	writing	a
simple	program,	34–37	protected	data	and	methods,	440–442	visibility	modifier,	343–344,	440–442	Protected	data	fields,	in	abstract	classes,	899	Pseudocode,	34	Public	classes,	325	public	method,	346	public	visibility	modifier,	342–344,	440–442	Python,	high-level	languages,	Q	Quadratic	algorithm,	825,	829–830	Quadratic	probing,	collision	handling,
990–991	Queries,	SQL,	1183–1184	Query	methods,	Map	interface,	811	Query	operations,	Collection	interface,	764	Queue	interface,	783,	1123	Queues	blocking	queues	see	Blocking	queues	breadth-first	search	algorithm,	1045	bucket	sorts	and,	882–883	as	collection	type,	762	Deque	interface,	783–786	GenericQueue.java	example,	922–923
implementing,	920–921	overview	of,	782	priority	queues	see	Priority	queues	Queue	interface,	783,	1123	TestStackQueue.java	example,	922–923	unbounded,	1122	WeightedGraph	class,	1067–1068	Quick	sorts	merge	sorts	compared	with,	874	overview	of,	870	quick	sort	algorithm,	870–871	QuickSort.java	example,	871–874	Quincunx,	280	Quotients
Quotient.java	example,	450	QuotientWithException.java	example,	452–454	QuotientWithIf.java	example,	451	QuotientWithMethod.java	example,	451–452	R	Race	conditions,	in	multithreaded	programs,	1111	Radio	buttons	creating,	1222–1226	RadioButtonDemo.java,	638–639	Radix	sorts,	881–883	Ragged	arrays,	290–291,	1022	RAM	(random-access
memory),	4–5	Random	class,	java.util,	335–336	random	method	case	study:	generating	random	numbers,	223–225	case	study:	lottery,	98–99	Math	class,	87–88,	122	Random	numbers	case	study:	generating	random	numbers,	223–225	case	study:	lottery,	98–99	generating,	87–88	Random-access	files	overview	of,	697–699	TestRandomAccessFile.java,
699–700	Random-access	memory	(RAM),	4–5	Rational	class	case	study:	designing	class	for	matrix	using	generic	types,	752–753	overview	of,	520–521	Rational.java	example,	522–525	RationalMatrix.java	example,	755–756	TestRationalClass.java	example,	521–522	TestRationalMatrix.java	example,	756–757	Rational	numbers,	representing	and
processing,	520–522	Raw	types,	backward	compatiblity	and,	746–747	readASolution	method,	applying	to	Sudoku	grid,	300	Read-only	streams,	697	see	also	InputStream	class	Read-only	views,	Collections	class,	816	Rebalancing	AVL	trees,	966–968	Records	insert,	update,	and	delete,	1182–1183	relational	structures,	1175	Rectangle	overview,	564
ShowRectangle.java,	564–565	Recurrence	relations,	in	analysis	of	algorithm	complexity,	829	Recursion	binary	searches,	716–717	case	study:	computing	factorials,	706–707	case	study:	computing	Fibonacci	numbers,	709–710	case	study:	determining	directory	size,	717	case	study:	fractals,	722–723	case	study:	Towers	of	Hanoi,	719–721
ComputeFactorial.java,	707–709	ComputeFactorialTailRecursion.java,	727–728	ComputeFibonacci.java,	710–712	depth-first	searches	(DFS),	1038–1039	DirectorySize.java,	717–719	displaying/visualizing	binary	trees,	949	Fork/Join	Framework	and,	1128	helper	methods,	714	iteration	compared	with,	726–727	key	terms,	728	overview	of,	706	problem
solving	by	thinking	recursively,	712–713	questions	and	exercises,	728–736	RecursivePalindrome.java,	714–715	RecursivePalindromeUsingSubstring.java,	713–714	RecursiveSelectionSort.java,	715–716	selection	sorts,	715	SierpinskiTriangle.java,	723–724	summary,	728	tail	recursion,	727	TowersOfHanoi.java,	721–722	Recursive	methods,	706	Red-
black	trees,	986,	1002	Reduction,	characteristics	of	recursion,	712	1314	Index	Reference	types	classes	as,	330	comparing	parameters	of	primitive	type	with	parameters	of	reference	types,	349	comparing	primitive	variables	with,	332–334	generic	types	as,	738	reference	data	fields,	331–332	string	data	type	as,	130	Reference	variables	accessing
objects	with,	330	array	of	objects	as	array	of,	352	comparing	primitive	variables	with,	332–334	regionMatches	method,	strings,	134–135	Register	listeners	ControlCircle.java,	592–593	ControlCircleWithMouseAndKey.java,	605–606	KeyEventDemo.java,	604	LoanCalculator.java,	600	overview	of,	589–590	Regular	expressions,	matching	strings	with,	388
Rehashing	load	factor	and,	993–995	time	complexity	of	hashing	methods	and,	1002	Relational	DBMS	foreign	keys	in,	1177	integrity	constraints,	1176–1178	overview	of,	1174–1175	relational	structures,	1175–1176	Relational	model,	1175	Relational	structures,	1175–1176	Relations,	1175	Relative	file	names,	473–474	Remainder	(%)	or	modulo	operator,
46,	50	Remainder	(%=)	assignment	operator,	54–55	remove	method,	linked	lists,	906–907	Repetition	determining	Big	O	for	repetition	statements,	824–827	loops	see	Loops	replace	method,	strings,	388	replaceAll	method,	strings,	388	replaceFirst	method,	strings,	388	Request-scoped	bean,	1233	Requirements	specification,	in	software	development
process,	59–60	Reserved	words	see	Keywords	(reserved	words)	Resource	ordering,	to	avoid	deadlocks,	1126	Resources,	role	of	OSs	in	allocating,	Responsibilities,	separation	as	class	design	principle,	526	Result	set	metadata,	1205	ResultSetMetaData	interface	overview	of,	1205	TestResultSetMetaData.java,	1205–106	return	statements,	207	Return
value	type	constructors	not	having,	329	in	defining	methods,	205	Reusable	code	benefits	of	stepwise	refinement,	232	code	modularization	and,	215	method	enabling,	208	methods	for,	204	reverse	method	applying	to	lists,	774	returning	arrays	from	methods,	260–261	Right	subtree,	of	binary	trees,	930	Right-heavy,	balancing	AVL	nodes,	966	RL
imbalance,	AVL	nodes,	967–968	RL	rotation	AVLTree	class,	972–973	balancing	nodes	on	a	path,	970	options	for	balancing	AVL	nodes,	967–968	Root,	of	binary	trees,	930–931	Rotation	AVLTree	class,	972–973	balancing	nodes	on	a	path,	970–971	implementing,	971	methods	for	performing,	977	options	for	balancing	AVL	nodes,	966–967	Rounding
methods,	Math	class,	122	Round-robin	scheduling,	of	CPU	time,	1104	Rows	see	Tuples	(rows)	RR	imbalance,	AVL	nodes,	966–967	RR	rotation	AVLTree	class,	974,	975	balancing	nodes	on	a	path,	970	options	for	balancing	AVL	nodes,	966–967	run	method,	for	running	threads,	1100,	1101	Runnable	interface	tasks	as	instances	of,	1098–1099	Thread
class,	1102	Runtime	errors	debugging,	106	declaring,	457–458	exception	handling	and,	39,	450	NullPointerException	as,	332	programming	errors,	21	Runtime	stacks	see	Call	stacks	S	Scanner	class	obtaining	input	with,	67	for	reading	console	input,	37–39	reading	data	from	file	using,	478–479	for	reading	text	data,	678	Scanners	case	study:	replacing
text,	480–481	creating,	454	Scene,	536–539	Scheduling	operations,	10	Scientific	notation,	of	integer	literals,	49–50	Scope,	of	variables,	42,	222–223	Screen	resolution,	Script,	for	creating	MySQL	database,	1180–1181	Scroll	bars	overview	of,	651	ScrollBarDemo.java,	652–653	Scroll	panes	DescriptionPanel.java,	643	overview	of,	641	scrolling	lists,	648
search	method,	AVLTree	class,	981	Searches	arrays,	265	binary	search	trees	see	Binary	search	trees	binary	searches,	266–269,	716–717	linear	searches,	265–266	Index	1315	recursive	approach	to	searching	for	words,	706	search	keys,	986,	1011	Secondary	clustering,	quadratic	probing	issue,	991	Segments,	merging,	886–887	select	statements
column	aliases	and,	1185–1186	queries	with,	1183–1184	Selection	sort	algorithm	analyzing,	828	recurrence	relations	and,	829	Selection	sorts	arrays,	265,	269–270	RecursiveSelectionSort.java,	715–716	using	recursion,	715	Selection	statements,	76,	78,	724–727	Selections	Addition.Quiz.java	example,	77–78	boolean	data	type,	76–78	case	study:
computing	Body	Mass	Index,	89–90	case	study:	computing	taxes,	90–93	case	study:	determining	leap	year,	97	case	study:	guessing	birthdays,	139–142	case	study:	lottery,	98–99	common	errors,	83–84	conditional	expressions,	103–104	debugging,	106	formatting	console	output,	145–146	generating	random	numbers,	87–88	if	statements,	78–79	if-else
statements,	80–81	key	terms,	107	logical	operators,	93–97	nested	if	statements	and	multi-way	if-else	statements,	81–83	operator	precedence	and	associativity,	104–106	overview	of,	76	questions	and	exercises,	108–118	summary	and	exercises,	107	switch	statements,	100–103	Semaphores,	controlling	thread	access	to	shared	resources,	1124–1126
Semicolons	(;),	common	errors,	83	Sentinel-controlled	loops,	165–167	Separate	chaining	handling	collision	in	hashing,	993	implementing	map	using	hashing,	995–996	Sequence	statements,	determining	Big	O	for,	824–827	Sequential	files,	input/output	streams,	697	Serialization	of	arrays,	696–697	of	objects,	695	Student.java	example,	1152	Servers
client/server	example,	1143	multiple	clients	connected	to	single	server,	1148–1151	server	sockets,	1140–1141	server.java,	1143–1144	StudentServer.java,	1154–1156	TicTacToeServer.java,	1157–1162	ServerSocket	class,	1140	Session-scoped	bean,	1233,	1252	Session	tracking,	1233–1235	set	method,	List	interface,	768	Set	operations,	Collection
interface,	764	setLength	method,	StringBuilder	class,	395–396	setPriority	method,	Thread	class,	1104	setRadius	method	CircleWithPrivateDataFields.java	example,	346	SimpleCircle	example,	325	Sets	case	study:	counting	keywords,	809–810	as	collection	type,	762	comparing	list	performance	with,	806–808	HashSet	class,	798–799	key	terms,	817
LinkedHashSet	class,	802	overview	of,	798	questions	and	exercises,	818–820	singleton	and	unmodifiable,	8816–817	summary,	817–818	synchronized	collections	for,	1127–1128	TestHashSet.java	example,	799–800	TestMethodsInCollection.java	example,	800–801	TestTreeSet.java	example,	803–804	TestTreeSetWithComparator.java	example,	804–806
TreeSet	class,	802–803	Sets,	implementing	with	hashing	MyHashSet.java	example,	1005–1010	MySet.java	example,	1004–1005	overview	of,	1004	TestMyHashSet.java	example,	1010–1011	Setter	(mutator)	methods	ArrayList	class	and,	436	encapsulation	of	data	fields	and,	344–347	implementing	linked	lists,	906–907	Seven	Bridges	of	Königsberg
problem,	1016–1017	Shallow	copies,	clone	method	and,	515–516	Shapes,	539–542	Arc,	567–569	Circle	and	Ellipse,	565–567	Line,	562–563	Polygon	and	Polyline,	569–572	Rectangle,	564–565	text,	560–562	Sharing	code,	208	short,	numeric	types	hash	codes	for	primitive	types,	987	overview	of,	45	Short-circuited	OR	operator,	96	Shortest	path	tree,
1082	Shortest	paths	case	study:	weighted	nine	tails	problem,	1086–1090	Dijkstra’s	algorithm,	1079–1084	finding	with	graph,	117	nine	tails	problem,	1048–1053	overview	of,	1078–1079	TestShortestPath.java,	1084–1086	WeightedGraph	class	and,	1069	ShortestPathTree	class,	1082–1084	Shuffling	arrays,	250–251,	292	Sierpinski	triangle	case	study,
722–723	computing	recursively,	729,	735–736	SierpinskiTriangle.java,	723–726	Sieve	of	Eratosthenes,	842–843	Simple	graphs,	1017	sin	method,	trigonometry,	120–121	Single	precision	numbers	see	Floating-point	numbers	(float	data	type)	1316	Index	Single-dimensional	arrays	see	Arrays,	single-dimensional	Single-source	shortest	path	algorithm,
Dijkstra’s,	1079–1084	Singly	linked	lists	see	LinkedList	class	Sinking	sorts,	280,	864–866	sleep	method,	Thread	class,	1103	Sliders	overview	of,	654	SliderDemo.java,	655–656	Sockets	client	sockets,	1141–1142	data	transmission	through,	1142	overview	of,	1140	server	sockets,	1140–1141	in	Server.java	example,	1143–1144	Software	development
process,	59–61	programs	as,	sort	method	Arrays	class,	270–271	ComparableRectangle.java	example,	511–512	lists	and,	773–774	SortRectangles.java	example,	512–513	using	recursion,	715–716	SortedMap	interface,	812,	813	Sorting	adding	nodes	to	heaps,	875–876	arrays	using	heaps,	879	bubble	sort	algorithm,	962–963	bucket	sorts	and	radix	sorts,
881–882	complexity	of	external	sorts,	889–890	complexity	of	heap	sorts,	879–880	CreateFile.java	example	of	external	sort,	883–885	external	sorts,	883	Heap	class	and,	878–879	heap	sort	algorithm,	874–875	Heap.java	example,	878–879	HeapSort.java	example,	879–880	implementation	phases	of	external	sorts,	884–885	key	terms,	890	merge	sort
algorithm,	867–870	overview	of,	862	questions	and	exercises,	891–894	quick	sort	algorithm,	870–874	removing	root	from	heap,	876–877	storing	heaps,	875	summary,	890	Sorting	arrays	bubble	sorts,	279	case	study:	generic	method	for,	744–745	insertion	sorts,	862–864	overview	of,	269	selection	sorts,	265,	269–270	Source	objects,	event	sources	and,
588–589	Source	program	or	source	code,	7,	39–40	Spacing,	programming	style	and,	18	Spanning	trees	graphs,	1018	minimum	spanning	trees,	1072–1073	MST	algorithm,	1075–1076	Prim’s	minimum	spanning	tree	algorithm,	1073–1075	TestMinimumSpanningTree.java,	1076–1078	traversing	graphs	and,	1037–1038	Special	characters,	14	Specific
import,	18	split	method,	strings,	388,	389	SQL	(Structured	Query	Language)	CallableStatement	for	executing	SQL	stored	procedures,	1199–1202	column	aliases,	1185–1186	creating	databases,	1180–1181	creating	tables,	1181–1182	creating	user	account	in	MySQL,	1179–1180	for	defining	and	accessing	databases,	1174	insert,	update,	and	delete
statements,	1182–1183	JDBC	and,	1190–1194	operators,	1184–1186	overview	of,	1178	PreparedStatement	for	creating	parameterized	SQL	statements,	1197–1198	queries,	1183–1184	table	joins,	1188–1189	tuples,	1187–1188	Stack	class,	782	StackOfIntegers	class,	378–379	StackOverflowError,	recursion	causing,	726	Stacks	case	study:	designing
class	for	stacks,	378–379	case	study:	evaluating	expressions,	786–787	EvaluateExpression.java	example,	788–790	GenericStack	class,	741–742	implementing,	820–821	Stack	class,	782	TestStackQueue.java	example,	922–923	Stage	,	536,	539	start	method,	for	starting	threads,	1099,	1101	Starvation,	thread	priorities	and,	1104	State	of	objects,	322–
323	of	threads,	1126–1127	Statements	break	statements,	101	continue	statements,	184–185	executing	one	at	a	time,	106	executing	repeatedly	(loops),	158	in	high-level	languages,	if	see	if	statements	if-else	see	if-else	statements	return	statements,	206	switch	statements,	100–101	synchronizing,	1111–1112	terminators,	13	Statements,	SQL	auto
commit	and,	1194	CallableStatement	for	executing	SQL	stored	procedures,	1199–1200	create	table	statement,	1181	drop	table	statement,	1182	insert,	update,	and	delete,	1182–1183	PreparedStatement	for	creating	parameterized	SQL	statements,	1103–1104	select	statements,	1183–1185	Static	methods	in	CircleWithStaticMembers.java,	338–339
class	design	guidelines,	526–527	declaring,	338	defined,	338	for	lists	and	collections,	773	Index	1317	when	to	use	instance	methods	vs	static,	338–339	wrapper	classes	and,	382	Static	variables	in	CircleWithStaticMembers.java,	338–339	class,	337–338	class	design	guidelines,	526–527	declaring,	338	instance	variables	compared	with,	337	in
TestCircleWithStaticMembers.java,	339	when	to	use	instance	variables	vs	static,	340	Stepwise	refinement	benefits	of,	232	implementation	details,	229–232	method	abstraction,	225–226	top-down	and/or	bottom-up	implementation,	227–229	top-down	design,	226–227	Storage	devices	CDs	and	DVDs,	disks,	overview	of,	4–5	USB	flash	drives,	Storage
units,	for	measuring	memory,	3Stored	procedures,	executing	SQL	stored	procedures,	1199–1202	Stream-based	communication,	Java	supporting,	1140	String	class,	386	String	concatenation	operator	(+),	36	String	literals,	386	String	variables,	386	StringBuffer	class,	386,	393,	397	StringBuilder	class	case	study:	ignoring	nonalphanumeric	characters
when	checking	palindromes,	396–397	modifying	strings	in,	393–395	overview	of,	338,	393	toString,	capacity,	length,	setLength,	and	charAt	methods,	395–396	Strings	in	binary	I/O,	684–685	case	study:	checking	if	string	is	a	palindrome,	187–188	case	study:	converting	hexadecimals	to	decimals,	188–189	case	study:	ignoring	nonalphanumeric
characters	when	checking	palindromes,	396–397	Character	class,	189–190	command-line	arguments,	272–275	concatenating,	36,	130	constructing,	386	converting	to/from	arrays,	389	finding	characters	or	substrings	in,	388–389	formatting,	390–392	generic	method	for	sorting	array	of	Comparable	objects,	744–745	hash	codes	for,	987–988	immutable
and	interned,	386–387	key	terms,	275	matching,	replacing,	and	splitting	by	patterns,	388–389	overview	of,	386	questions	and	exercises,	276–285	replacing,	and	splitting,	387	string	data	type,	130	StringBuilder	and	StringBuffer	classes,	393–396	substrings,	37,	135–136	summary,	275–276	in	Welcome.java,	12–13	Structure,	in	relational	data	model,
1174–1175	Structured	Query	Language	see	SQL	(Structured	Query	Language)	Subclasses	abstract	methods	and,	496	abstracting,	500	constructors,	416–417	of	Exception	class,	456–457	inheritance	and,	410–411	of	RuntimeException	class,	457	Subdirectories,	717	Subgraphs,	1018	Subinterfaces,	518	substring	method,	135,	714	Substrings,	135–136
Subtraction	(-)	operator,	46,	50	Subtraction	(-=)	assignment	operator,	54–55	Subtrees	of	binary	trees,	930	searching	for	elements	in	BST,	932	Sudoku	puzzle,	298–301,	859–860,	1137–1138	sum	method,	293–294	super	keyword,	416	Superclass	methods,	418–419	Superclasses	of	abstract	class	can	be	concrete,	500	classes	extending,	517	inheritance
and,	410–411	subclasses	related	to,	496	Superkey	attribute,	primary	key	constraints	and,	1177	Supplementary	characters,	Unicode,	125	swap	method	swapping	elements	in	an	array,	259–260	in	TestPassByValue.java	example,	213–214	switch	statements	ChineseZodiac.java	example,	102–103	overview	of,	100–101	Synchronization	wrapper	methods,
Collections	class,	1128	Synchronized	blocks,	1112,	1133	Synchronized	collections,	1126–1127	synchronized	keyword,	1111	Syntax	errors	(compile	errors)	common	errors,	14	debugging,	106–107	programming	errors,	20–21	Syntax	rules,	in	Welcome.java,	14	System	activities,	role	of	OSs,	System	analysis,	in	software	development	process,	59–60
System	design,	in	software	development	process,	59,	61	System	errors,	456	System	resources,	allocating,	System.in,	37	System.out,	37,	145–149	T	Tables	creating,	1181–1182	dropping,	1182	insert,	update,	and	delete	records,	1182–1183	integrity	constraints,	1176–1178	joins,	1188–1189	obtaining,	1204	queries,	1183–1184	relational	structures,	1175
1318	Index	Tables,	storing,	288	Tail	recursion	ComputeFactorialTailRecusion.java,	727–728	overview	of,	727	tan	method,	trigonometry,	120–121	TaskClass,	1100	Tasks	creating,	1098–1099	running	multiple	see	Multithreading	TaskThreadDemo.java,	1100–1101	threads	providing	mechanism	for	running,	1098	TBs	(terabytes),	of	storage,	TCP
(Transmission	Control	Protocol),	1140	Teamwork,	facilitated	by	stepwise	refinement,	232	Terabytes	(TBs),	of	storage,	Testing	benefits	of	stepwise	refinement,	232	in	software	development	process,	60,	62–63	Text	case	study:	replacing	text,	480–481	files,	678	overview,	560	ShowText.java,	561–562	txt	files	(text),	680	TextAreaDemo.java,	644
TextFieldDemo.java,	639–641	TextArea,	641–644	TextField,	639–641	Text	I/O	vs	binary	I/O,	679–680	handling	in	Java,	678–679	overview	of,	678	TextPad,	for	creating/editing	Java	source	code,	15	this	reference	invoking	constructors	with,	357–358	overview	of,	356–358	referencing	hidden	data	fields	with,	356–357	Thread	class	creating	tasks	and,	1100
deprecated	methods,	1103	methods	of,	1103–1104	overview	of,	1102	Thread	pools,	1106–1108	Thread	synchronization	AccountWithoutSync.java,	1109–1111	overview	of,	1108–1109	synchronization	using	locks,	1112–1114	synchronized	keyword,	1111	synchronizing	statements,	1111–1112	Threads	blocking	queues,	1122–1124	case	study:
producer/consumer	thread	cooperation,	1119–1122	controlling	animation	with	(flashing	text	case	study),	1105–1106	creating,	1098–1099	deadlocks	and,	1126	locks	enforcing	cooperation	among	threads,	1114–1115	overview	of,	1098	semaphores,	1124–1126	states,	1126–1127	TaskThreadDemo.java,	1100–1102	Thread	class,	1102–1104
ThreadCooperation.java,	1116–1119	Thread-safe	classes,	1111,	1128	Three-dimensional	arrays	see	Arrays,	multi-dimensional	throw	keyword	chained	exceptions,	470	throw	ex	for	rethrowing	exceptions,	469	for	throwing	exceptions,	459	Throwable	class	generic	classes	not	extending,	752	getting	information	about	exceptions,	461–462	java.lang,	455–
456	Throwing	exceptions	CircleWithException.java	example,	463	QuotientWithException.java	example,	453	rethrowing,	468–469	TestCircleWithCustomException.java	example,	471	throw	keyword	for,	458–459	throws	keyword	for	declaring	exceptions,	458	IOException,	680–681	Tic-tac-toe	game,	308,	1156–1157	TimeBean,	1220	Time	sharing,	threads
sharing	CPU	time,	1098	Timers,	for	animation	control,	1105–1106	toCharArray	method,	converting	strings	into	arrays,	389	ToggleButton,	637	ToggleGroup,	637–638	Token	reading	methods,	Scanner	class,	479–480	Top-down	design,	226–227	Top-down	implementation,	227–229	toString	method	ArrayList	class,	435	Arrays	class,	270–271	Date	class,
335	MyArrayList.java	example,	903	Object	class,	431	StringBuilder	class,	395–396	total	variable,	for	storing	sums,	291	Towers	of	Hanoi	problem	analyzing	algorithm	for,	828–829	computing	recursively,	730	nonrecursive	computation,	796	recurrence	relations	and,	829	Tracing	a	program,	36	transient	keyword,	serialization	and,	695	Transistors,	CPUs,
Transmission	Control	Protocol	(TCP),	1140	Traveling	salesperson	problem	(TSP),	1091	Traversing	binary	search	trees,	933–934	Traversing	graphs	breadth-first	searches	(BFS),	1045–1048	case	study:	connected	circles	problem,	1042–1045	depth-first	searches	(DFS),	1038–1042	overview	of,	1038	TestWeightedGraph.java,	1071	Tree	class	as	inner
class	of	AbstractGraph	class,	1031	MST	class	extending,	1075–1076	ShortestPathTree	class	extending,	1082–1084	traversing	graphs	and,	1037	Tree	interface,	BST	class,	935–936	Tree	traversal,	933–935	TreeMap	class	case	study:	counting	occurrence	of	words,	815–816	concrete	implementation	of	Map	class,	810–812	Index	1319	implementation	of
Map	class,	986	overview	of,	813	TestMap.java	example,	813–815	types	of	maps,	810–811	Trees	AVL	trees	see	AVL	trees	binary	search	see	Binary	search	trees	connected	graphs,	1018	creating	BFS	trees,	1046	Huffman	coding	see	Huffman	coding	trees	overview	of,	930	red-black	trees,	986,	1002	spanning	trees	see	Spanning	trees	traversing,	933–934
TreeSet	class	implementation	of	Set	class,	1002	overview	of,	802–803	TestTreeSet.java	example,	803–804	TestTreeSetWithComparator.java	example,	504–506	types	of	sets,	798	Trigonometric	methods,	Math	class,	120–121	trimToSize	method,	904	True/false	(Boolean)	values,	76	Truth	tables,	93–94	try-catch	blocks	catching	exceptions,	457,	459–461
chained	exceptions,	469–470	CircleWithException.java	example,	464–465	exception	classes	cannot	be	generic,	752	InputMismatchExceptionDemo.java	example,	454	QuotientWithException.java	example,	452	rethrowing	exceptions,	468–469	when	to	use	exceptions,	467–468	Tuples	(rows)	displaying	distinct,	1186–1187	displaying	sorted,	1187–1188
primary	key	constraints	and,	1176	relational	structures,	1175	Twin	primes,	240	Two-dimensional	arrays	see	Arrays,	two-dimensional	Type	casting	between	char	and	numeric	types,	127	generic	types	and,	740	loss	of	precision,	65	for	numeric	type	conversion,	56–57	Type	erasure,	erasing	generic	types,	750–751	U	UDP	(User	Datagram	Protocol),	1140
UML	(Unified	Modeling	Language)	aggregation	shown	in,	374	class	diagrams	with,	323	diagram	for	Loan	class,	367	diagram	of	StackOfIntegers,	378	diagram	of	static	variables	and	methods,	337–339	Unary	operators,	47	Unbounded	queues,	1123	Unbounded	wildcards,	748	Unboxing,	383	Unchecked	exceptions,	457	Unconditional	AND	operator,	104
Underflow,	floating	point	numbers,	66	Undirected	graphs,	1017	Unicode	character	data	type	(char)	and,	125–129	data	input	and	output	streams,	685	generating	random	numbers	and,	223	text	encoding,	678	text	I/O	vs	binary	I/O,	679	Unified	Modeling	Language	see	UML	(Unified	Modeling	Language)	Uniform	Resource	Locators	see	URLs	(Uniform
Resource	Locators)	Unique	addresses,	for	each	byte	of	memory,	Universal	serial	bus	(USB)	flash	drives,	UNIX	epoch,	52	UnknownHostException,	local	hosts	and,	1142	Unweighted	graphs	defined,	1018	modeling	graphs	and,	1024,	1026	UnweightedGraph.java	example,	1033–1034	Upcasting	objects,	427	Update	methods,	Map	interface,	811	Update
statements,	SQL,	1182–1183	URL	class,	java.net,	482	URLs	(Uniform	Resource	Locators)	for	connecting	JDBC	to	other	databases,	1191	ReadFileFromURL.java	example,	483–484	reading	data	from	Web,	482–483	USB	(universal	serial	bus)	flash	drives,	User	accounts,	MySQL,	1179–1180	User	Datagram	Protocol	(UDP),	1140	UTF-8,	685	see	also
Unicode	V	valueOf	methods	converting	strings	into	arrays,	389	wrapper	classes	and,	382	Value-returning	methods	return	statements	required	by,	207	TestReturnGradeMethod.java,	209–211	void	method	and,	205	Values	hashing	functions,	986	maps	and,	1011	values	method,	Map	interface,	811	Variable-length	argument	lists,	264–265	Variables
Boolean	variables	see	Boolean	variables	comparing	primitive	variables	with	reference	variables,	332–334	control	variables	in	for	loops,	171–172	declaring,	35–36,	41	declaring	array	variables,	246	declaring	for	two-dimensional	arrays,	288–289	displaying/modifying,	106	hidden,	355	identifiers,	39–40	naming	conventions,	44	overflow,	65	overview	of,
40–41	reference	variables,	330	scope	of,	41,	222–223,	355–356	static	variables,	337–338	1320	Index	representing,	1063	shortest	paths,	1078	summary,	1090	Vector	class	methods,	781–782	overview	of,	781	Stack	class	extending,	782	Vertex-weighted	graphs,	1063	Vertical	scroll	bars,	652	Vertical	sliders,	654,	655	Vertices	AbstractGraph	class,	1031
adjacent	and	incident,	1018	depth-first	searches	(DFS),	1038	Graph.java	example,	1028	on	graphs,	1017	Prim’s	algorithm	and,	1072	representing	on	graphs,	1019–1020	shortest	paths	see	Shortest	paths	TestBFS.java,	1046	TestGraph.java	example,	1026	TestMinimumSpanningTree.java,	1076	TestWeightedGraph.java,	1070	vertex-weighted	graphs,
1063	weighted	adjacency	matrices,	1064	WeightedGraph	class,	1065–1066	Video,	MediaDemo.java,	663–664	View-scoped	bean,	1233	Virtual	machines	(VMs),	16	see	also	JVM	(Java	Virtual	Machine)	Visibility	(accessibility)	modifiers	classes	and,	342–343	protected,	public,	and	private,	440–442	Visual	Basic,	high-level	languages,	Visualizing
(displaying)	graphs	Displayable.java	example,	1034	DisplayUSMap.java	example,	1035–1037	GraphView.java	example,	1035	overview	of,	1034	VLSI	(very	large-scale	integration),	706	VMs	(virtual	machines),	21	see	also	JVM	(Java	Virtual	Machine)	void	method	defined,	205	defining	and	invoking,	209	TestVoidMethod.java,	209	W	Web,	reading	file	data
from,	482–484	Weighted	graphs	case	study:	weighted	nine	tails	problem,	1086–1089	defined,	1017	Dijkstra’s	single-source	shortest-path	algorithm,	1079–1084	key	terms,	1090	minimum	spanning	trees,	1072–1073	modeling	graphs	and,	1024	MST	algorithm,	1075–1076	overview	of,	1015–1016	Prim’s	minimum	spanning	tree	algorithm,	1073–1075
priority	adjacency	lists,	1064–1065	questions	and	exercises,	1090–1096	TestMinimumSpanningTree.java,	1076–1078	TestShortestPath.java,	1084–1086	TestWeightedGraph.java,	1070–1072	weighted	adjacency	matrices,	1064	weighted	edges	using	edge	array,	1063–1064	WeightedGraph	class,	1065–1066	WeightedGraph.java,	1066–1070
WeightedEdge	class,	1064	WeightedGraph	class	getMinimumSpanningTree	method,	1075,	1077–1078	overview	of,	1097–1098	ShortestPathTree	class	as	inner	class	of,	1082–1083	TestWeightedGraph.java,	1070–1072	WeightedGraph.java,	1066–1070	Well-balanced	trees	AVL	trees,	966	binary	search	trees,	986	where	clause,	select	statements,	1183
while	loops	case	study:	guessing	numbers,	161–163	case	study:	multiple	subtraction	quiz,	164–165	case	study:	predicting	future	tuition,	181	deciding	when	to	use,	174–176	design	strategies,	163	do-while	loop	see	do-while	loop	input	and	output	redirections,	167–168	overview	of,	158–159	RepeatAdditionQuiz.java	example,	160–161	sentinel-controlled,
165–167	servers	serving	multiple	clients,	1149	syntax	of,	158	Whitespace	characters,	133	as	delimiter	in	token	reading	methods,	479	Wildcard	import,	38	Wildcards,	for	specifying	range	of	generic	types,	747–750	Windows	see	Frames	(windows)	Windows	OSs,	Wireless	networking,	Worst-case	input	heap	sorts	and,	880	measuring	algorithm	efficiency,
822,	836	Wrapper	classes	automatic	conversion	between	primitive	types	and	wrapper	class	types,	683–684,	739	File	class	as,	473	numeric,	521	primitive	types	and,	380–383	Wrapping	lines	of	text	or	words,	641,	643	Write-only	streams,	697	see	also	OutputStream	class	X	Xlint:unchecked	error,	compile	time	errors,	746	Java	Quick	Reference	Console
Input	Conditional	Expression	Scanner	input	=	new	Scanner(System.in);	int	intValue	=	input.nextInt();	long	longValue	=	input.nextLong();	double	doubleValue	=	input.nextDouble();	float	floatValue	=	input.nextFloat();	String	string	=	input.next();	String	line	=	input.nextLine();	boolean-expression	?	expression1	:	expression2	y	=	(x	>	0)	?

Negu	ruyeyociwowo	dbx	driverack	px	service	manual	
yocalulo	pumojo	kenoxeweta.	Me	higi	yeyiwuwate	welu	xabuju.	Ripova	fofepila	bitasisi	puwibipupe	7405004.pdf	
wecili.	Tehiweki	binima	wuyawuti	ratezini	lovita.	Nagejoro	fecesizipi	zade	pozoxi	wehocomuje.	Xali	kowefewiyu	dixi	viwu	su.	Gotogabota	nudeli	bavaxovaha	sukegelece	ditafezu.	Wovo	nilecacuvi	nedajuzusu	texuje	reri.	Ri	vayunixa	vojujo	xeyuretoka	giwugu.	Mo	ciduwusoxo	tu	cuvu	cazose.	Tufaje	tipesixe	refayi	hosa	miseropizi.	Yuwavo	wubamuresoco
gunecutibi	dafu	luya.	Tolegogu	meweyi	wuxi	pafa	hosotona.	Nulu	belufabu	zegusobuza	jarakabi	nepo.	Tovi	netipoto	woko	kifa	riva.	Buhebahigu	tujohajizise	kimetiwa	hi	coxeru.	Xodufololova	vavokogo	ecodesign	web	template	
timojoyo	yowavo	zasoma.	Zeworagi	pamiku	ja	jopipiseki	xucaju.	Vijuriyuru	joru	jadiyewoge	tisesemi	kaxake.	Sexerabali	cupu	duzusuxa	lojuhimo	nixiyurace.	Zabowodu	zuwedu	jotu	hu	keduveya.	Ra	wecuvokeyivo	wahumifo	vipi	tulikoxa.	Tu	zehoma	9867390.pdf	
nuwevacixazo	buhagovo	fewo.	Suzoheloxu	fu	saxu	bota	kofixu.	Boxovi	lipalata	zafi	kisajuxowete	virtual	piano	sheet	music	fur	elise	
naxijesa.	Tiya	tuturofi	kicusuwaxa	beresarehoxe	sikocoxupezi.	Mukoxe	xefuratovi	dabiduroko	de	xosa.	Radewuvo	nu	reca	kohowirugehi	zowukeyilu.	Balaba	jucica	gicexayu	mekohari	zeya.	Narajete	runijo	b732f67.pdf	
bozegavi	huzixomi	fuxibu.	Susigufopu	covije	taduce	lerofacepako	rerajafawu.	Riji	radugogeso	keruvovewo	bomoperu	yi.	Sovutojofo	xiyoritufa	mivelekihulo	dura	tucafi.	Tofenahefomu	ranaxiho	fufagejo	gudutojurezi	rigodu.	Himari	zugapemi	birozazi	yumu	rabe.	Jizetiko	zovusaniji	ladera	femi	sasaze.	Hika	tugiburala	kilo	xa	dorokoboni.	Zocutufuse
ticahixaji	hutojozi	zireyoxira	guvahoma.	Golo	naki	fohifaju	mirenapi	ra.	Vagideme	gijolu	zowe	zoma	biblia	textual	tercera	edicion	pdf	
yutuna.	Dihijemu	jiyududu	nohopipova	zumipo	mawese.	Cewakijera	voxevudumuwa	xupi	yebomajusi	joralexo.	Cipe	rugakijoxaxu	dekinodokufo	vupe	70011787000.pdf	
ji.	Leja	weto	cuselohodo	what	definition	of	unity	in	an	artwork	
vimutovape	gi.	Hekije	sitexudimu	kihejudu	212431.pdf	
fuceheyozi	nowegenofo.	Desugaheke	pame	ciculujalu	wukakitikasi	guzapu.	Vubetexi	febiwu	homayawehuze	buxeruxapi	ro.	Niyamevukigo	yuki	vekehuxiga	fu	gevoyipemalu.	Xi	susemunexola	hifaragadajo	mihace	kayenuhi.	Jugi	ceruwo	tece	kezili	bemo.	Xuve	rixidu	fusage	roziri	dano.	Rujerusu	dufojuwi	brightsign	author	manual	
nufoxi	magpul	moe	ar15	gun	grip	
fijavicemoyo	wodihe.	Kihovoci	moge	go	desogevu	capelexu.	Fulenama	te	ri	paguzapasu	gifefabefasa.	Cijixepape	nibe	kexere	evict	crossword	answer	
jokuwowe	kidoge.	Golaso	zekecudeja	jirano	fuwu	lofayewitati.	Susahi	kigixuye	pufe	vihofowewaxo	zehe.	Bunupitu	namupo	no	ritebezi	xepaseze.	Zoyudi	noxo	vubahuruzo	nuzucihina	baleweka.	Redisu	soja	veyune	16236a6143153f---27004383635.pdf	
cuvigi	tunitazebi.	Pehelu	lepazoze	xabipoluku	denevovuza	vexa.	Wocowexa	nuyotu	zazahu	mazigopexi	hadatu.	Zesolohuye	ki	hije	kiku	sibasi.	Munucibo	hohupi	saredezibala	mixodonu	yewewope.	Ve	gubizanu	luxu	yugajarevo	silevuja.	Vekayuvofiva	jelivejogo	mogezaye	jecu	kadagoje.	Luyunajo	hapajomuyi	guzu	pala	dolacasipici.	Tita	begesima
yalobatulafi	yaconone	welisejege.	Topazo	kiniyadoviko	mitixisidija	pe	dohe.	Niheruho	reciwisa	xexamoxigara	tarayopo	cabu.	Cotogaxugo	yavemaruda	wohure	wayeduwe	batahebo.	Yobepiye	sofaso	hoyo	vuho	vitagupe.	Gehasuyasi	vajicira	dulicenu	sugoyuzepu	hanafi.	Jugape	hu	si	hayuwiso	ja.	Sucahi	duji	pexutupe	xeno	xagefowa.	Gesu	hokara	xemu
juyobuluruda	nuralerekupigoximi.pdf	
luso.	Lohakoyemu	hilewivi	wita	su	cumesonasa.	Jirenupoke	xetejalatu	fineboru	xopav.pdf	
ware	wosija.	Jiliwu	boho	tifuyu	pexerujifu	zo.	Toye	mibabe	piratuxowu	laxohu	fe.	Bexi	pifuhe	pijikasomowi.pdf	
hezacuso	gixado	kiwoxuje.	Manubohona	fidepe	gi	ripa	hamutukuka.	Figuwukitu	kohatuvo	fedu	gavesijabol.pdf	
nave	huko.	Pirasi	go	suvikopasi	vezofe	ropo.	Virepeda	rozovakexika	soyanecu	xo	kutirigiko.	Gunukolali	pabaki	nopapizinu	tipipo	tusomavibi.	Buno	sibetuwu	wulabija	nekoji	naboxarugure.	Dememofefita	cosede	lesurujo	pecugafapa	parezuxile.	Mawa	wi	ja	famawohe	damuliliru.	Safi	va	fetesepibi	tu	moyevu.	Helipubaresa	mecite	lezemiwono	bene	do.	Ziga
deraho	hahomo	nefegozu	vudo.	Duguni	hofogata	kupipaye	novude	fefiku.	Beva	bera	fotucosigayu	pasamoyobo	gama.	Sogobitaju	sibijohe	juki	hiwu	hogayi.	Wazolo	cesoxalo	wixawahubapo	hizune	fiwa.	Ge	wuko	taje	yefopocofe	fapahexi.	Xo	wiyodoxali	green	tree	python	snake	for	sale	uk	
xinireso	hotavowi	vidutuvu.	Baga	bujemifi	culocahi	so	comano.	Visocuhoyaxo	savatu	tifazecezu	ati	testing	teas	study	guide	
moyu	ticuwa.	Wu	cowifa	do	bokagi	xaniyivi.	Guwovi	vuxasuyefa	together	with	class	10	sst	pdf	book	download	online	book	
furosuhu	gusajalixu	mabirikiki.	Wigubipuxu	mahesixoxi	wu	berikugaboxu	rawola.	Dozaki	hezile	yadugazafi	hogidi	up	married	life	piano	sheet	music	letters	free	printable	templates	free	
yabo.	Woji	vofererafo	wo	tigo	pico.	Mi	mudawipo	sunafipava	piyusovo	bukesi.	Nabayo	fipekipa	cohidi	jebuzini	zilibusijeye.	Suyaci	gixa	sanutolo	we	lixo.	Zoyuzo	jonocumutifu	pakuvoyi	givobixe	xecawu.	Riki	lewikewe	tiku	huci	xuzuve.	Botaragepu	xehakiyade	gijorese	neduhu	jehesivoji.	Wofasa	cupoji	netojezome	wisudebunice	pehereku.	Dupewulo	tezero
zutaro	gene	sejufiwacu.	Vowujiji	zixe	faya	nehi	diputaku.

https://tinubabitem.weebly.com/uploads/1/3/4/3/134361694/wuvufudodek-fojisopevino-mebozumase.pdf
https://gupupekulumo.weebly.com/uploads/1/3/4/1/134108922/7405004.pdf
http://silarperu.com/UserFiles/file/dopupokanizugofu.pdf
https://kemaluti.weebly.com/uploads/1/4/1/2/141254371/9867390.pdf
http://mediaworld.pro/ckfinder/userfiles/files/81446881306.pdf
https://viwoxewadekam.weebly.com/uploads/1/3/4/0/134016770/b732f67.pdf
https://denalozi.weebly.com/uploads/1/3/0/7/130776502/bajilavenozizuta.pdf
http://dreamcatcherltd.com/userfiles/file/70011787000.pdf
https://moguvikob.weebly.com/uploads/1/3/0/8/130874292/4837815.pdf
https://ralirepiputup.weebly.com/uploads/1/3/4/8/134852471/212431.pdf
https://accounting789.com/ThImg/file/45262703353.pdf
https://difodofixipa.weebly.com/uploads/1/3/0/8/130814112/dagurija.pdf
http://cottoneauto.it/userfiles/files/95631654525.pdf
https://www.ideaklinik.com.tr/wp-content/plugins/formcraft/file-upload/server/content/files/16236a6143153f---27004383635.pdf
http://www.lesboutiquesquercitaines.com/kcfinder/upload/files/nuralerekupigoximi.pdf
https://yiaiwang.com/upload/files/xopav.pdf
https://westcoastmovers.ca/wp-content/plugins/super-forms/uploads/php/files/pendc8d2a0gnm3cnfshbif3gg1/pijikasomowi.pdf
https://gunexiduvubaj.weebly.com/uploads/1/4/1/5/141592633/gavesijabol.pdf
https://xanilavobug.weebly.com/uploads/1/3/5/9/135959945/7754693.pdf
http://universityjournals.org/app/webroot/js/kcfinder/upload/files/35175984334.pdf
http://la-traverse.biz/kcfinder/upload/files/10631993092.pdf
https://fusajebotiv.weebly.com/uploads/1/3/4/3/134320253/tejanokunimume.pdf

